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A B S T R A C T   

Understanding the interrelationships of clinical manifestations of Alzheimer’s disease (AD) and functional 
connectivity (FC) as the disease progresses is necessary for use of FC as a potential neuroimaging biomarker. 
Degradation of resting-state networks in AD has been observed when FC is estimated over the entire scan, 
however, the temporal dynamics of these networks are less studied. We implemented a novel approach to 
investigate the modular structure of static (sFC) and time-varying (tvFC) connectivity along the AD spectrum in a 
two-sample Discovery/Validation design (n = 80 and 81, respectively). Cortical FC networks were estimated 
across 4 diagnostic groups (cognitively normal, subjective cognitive decline, mild cognitive impairment, and AD) 
for whole scan (sFC) and with sliding window correlation (tvFC). Modularity quality (across a range of spatial 
scales) did not differ in either sFC or tvFC. For tvFC, group differences in temporal stability within and between 
multiple resting state networks were observed; however, these differences were not consistent between samples. 
Correlation analyses identified a relationship between global cognition and temporal stability of the ventral 
attention network, which was reproduced in both samples. While the ventral attention system has been pre-
dominantly studied in task-evoked designs, the relationship between its intrinsic dynamics at-rest and general 
cognition along the AD spectrum highlights its relevance regarding clinical manifestation of the disease.   

1. Introduction 

The pathological progression of Alzheimer’s disease (AD) is marked 
by abnormal aggregation of amyloid and tau proteins, neuro-
degeneration as measured by volumetric reduction in gray matter on 
magnetic resonance imaging (MRI), cognitive dysfunction, and alter-
ations in brain networks in resting-state and task-based functional MRI 
(fMRI) (Dennis and Thompson, 2014). Neuroimaging methods such as 
high-resolution structural MRI have been shown to be valuable disease 
predictors prior to onset of any cognitive deficits (Jack and Holtzman, 
2013, Jack et al., 2013). While structural MRI has been extensively 
utilized for AD diagnosis in the clinic, fMRI has yet to achieve such 
utility. Functional MRI studies have aimed to stratify disease groups (de 
Vos et al., 2018) and to identify relationships between brain function 

and measures of cognition, blood-based and cerebrospinal fluid bio-
markers (Veitch et al., 2019), and genetic risk factors (Quevenco et al., 
2017). Recently, numerous studies have focused on linking changes in 
behavior and/or clinical status to alterations in patterns of structural 
and functional brain connectivity (Douw et al., 2019, Stam, 2014), 
including in AD (Tijms et al., 2013). 

Connectivity data obtained from fMRI has been commonly analyzed 
with seed-based, independent component analysis (ICA) (Córdova-Pal-
omera et al., 2017, Fu et al., 2019), and/or graph theory methods 
(Contreras et al., 2019, Dennis and Thompson, 2014). Graph theory 
involves the construction of a matrix representation of connectivity 
across the whole brain, usually defining contiguous nonoverlapping 
regions/nodes and quantifying their pairwise relationships as a metric of 
statistical dependence/association (typically Pearson correlation). This 
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functional connectivity (FC) matrix can be subdivided into coherent 
functional systems or resting-state networks (RSNs) (Yeo et al., 2011, 
Power et al., 2011). Graph measures indexing functional integration and 
segregation can be computed from groupwise or individual FC matrices 
and statistically compared across clinical groups or related to behav-
ioral/cognitive outcomes of interest. Studies that employ graph theory 
on FC in AD have shown an overall decline in the internal coherence of 
RSNs (particularly the default mode network (Dai et al., 2019)), a 
reduction in separation between RSNs (Contreras et al., 2019), and al-
terations in various global network properties, such as modularity (Dai 
et al., 2019, Pereira et al., 2016). 

Modularity, also referred to as community structure, is a data-driven 
approach for clustering nodes of a network into groups of densely 
interconnected regions, or communities (Sporns and Betzel, 2016). It is 
an important property of brain networks, with FC modules (and their 
reconfiguration over time) playing an important role in normal cogni-
tive function (Bassett et al., 2011, Jang et al., 2017, Alavash et al., 
2019), and various diseases (Braun et al., 2016, Contreras et al., 2019). 
While this is a powerful tool for studying networks, detecting network 
communities poses a challenging optimization problem that requires 
multiple iterations to achieve comprehensive sampling of partitions 
across multiple spatial scales (Fortunato and Barthélemy, 2007). Alter-
ations in community structure have been reported in AD, showing 
higher modularity Q values in apolipoprotein E (APOE) ε4 carriers 
(Wang et al., 2015) (single community scale and one iteration), higher 
FC-structural connectivity coupling in the default mode network in AD 
(Dai et al., 2019) (single community scale and a single community 
partition from 1000 interations), and loss of segregation between default 
mode and frontoparietal RSNs (Contreras et al., 2019) (multi-scale 
community structure with 10,000 partitions summarized into a co- 
assignment matrix). Despite methodological differences in the applica-
tion of modularity among these reports, they suggest a common pattern 
of specific disturbances of FC community structure in AD during resting- 
state fMRI. 

In recent years it has been noted that, within a scan session, signif-
icant temporal fluctuations in functional connectivity can occur (Lurie 
et al., 2020, Hutchison et al., 2013), and that these fluctuations contain 
information that is lost when FC is estimated over the entire scan 
duration (static FC; sFC). Time-varying functional connectivity (tvFC) 
aims to capture those temporal fluctuations through estimation of con-
nectivity across discrete or partially overlapping windows (Abrol et al., 
2017, Shakil et al., 2016, Allen et al., 2014). These transient fluctuations 
have been studied to identify functional states that differed between 
diagnostic groups in AD (Gu et al., 2020), although (Schumacher et al., 
2021). To date, tvFC applications in AD have relied predominantly on 
ICA-derived FC matrices, which have shown a reduction in internetwork 
connectivity in AD (Schumacher et al., 2019) and healthy aging (Tian 
et al., 2018). Additionally, tvFC of the interaction between dorsal 
attention and default mode networks has been related to cognitive 
reserve/function in individuals with amnestic mild cognitive impair-
ment (MCI) (Franzmeier et al., 2017), and application of tvFC in ma-
chine learning has shown promise in disease classification (de Vos et al., 
2018). However, no investigations have examined the tvFC stability of 
RSN networks in AD. Additionally, robustness of outcomes is difficult to 
assess across published studies due to methodological differences that 
hinder generalizability. Here, we investigate the community structure of 
tvFC of RSN networks in a novel approach that aims to identify group 
differences and relationships while reducing the number of free pa-
rameters and employing a 2-sample design with the aim of identifying 
robust AD related alterations. Focusing on the propensity of regions to 
group into communities over time (which we refer to as temporal sta-
bility), we hypothesized that any meaningful alterations in tvFC dy-
namics would be present in both samples. Finally, we present 
supplementary analyses (described in section 2.7) that aid in under-
standing of the observed findings. 

2. Materials and methods 

2.1. Sample characteristics 

Data were collected as part of the Indiana Memory and Aging Study 
(IMAS) and from participants enrolled in the Indiana Alzheimer’s Dis-
ease Research Center (IADRC) at Indiana University School of Medicine. 
Informed consent was obtained from all participants or their represen-
tatives, and all procedures were approved by the Indiana University 
Institutional Review Board in accordance with the Belmont Report. 
Valid datasets from 161 participants were included in the study, con-
sisting of 55 cognitively normal (CN; 68.24 ± 8.97 years old), 47 with 
subjective cognitive decline (SCD; 69.23 ± 10.80 years old), 35 with 
MCI (72.54 ± 7.31 years old), and 24 with AD (66.42 ± 11.26 years old). 
A subset of these data was included as part of a previous publication 
(Contreras et al., 2019). Prior to any analysis of the data, the dataset was 
randomly split into equally sized Discovery (n = 80) and Validation (n =
81) samples. Additionally, for group comparisons, the authors respon-
sible for analysis were blinded to diagnostic group status of the partic-
ipants and instead provided with neutrally coded group labels. 
Demographic characteristics and diagnostic group distributions for both 
samples are presented in Table 1. Demographic differences were 
assessed with an analysis of variance (ANOVA) or Х2-test, where 
appropriate. 

2.2. Image acquisition 

All participants were scanned on a Siemens 3 T Prisma Scanner with 
a 64-channel head coil (Siemens, Erlangen, Germany). A high- 
resolution, T1-weighted, whole-brain magnetization prepared rapid 
gradient echo (MP-RAGE) volume was first acquired with parameters 
optimized for the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 
http://adni.loni.usc.edu): 220 sagittal slices, GRAPPA acceleration fac-
tor of 2, voxel size 1.1 × 1.1 × 1.2 mm3, 5 min 12 sec duration. Resting- 
state functional MRI (rs-fMRI) data were acquired with a gradient-echo 
echo-planar imaging sequence with a multi-band factor of 3, scan time of 
10 min 7 sec, and temporal resolution (TR) of 1.2 sec, resulting in 500 
timepoints. Other relevant parameters were TE = 29 ms, flip angle 65◦, 
2.5 × 2.5 × 2.5 mm3 voxel size, and 54 interleaved axial slices. During 
the scan, participants were instructed to remain still with eyes closed 
and to think of nothing in particular. Prior to rs-fMRI acquisition, two 
spin-echo echo-planar imaging (12 sec each, TR = 1.56 sec, TE = 49.8 
ms, flip angle 90◦) were acquired with reverse phase encoding di-
rections, to be used for creating field maps for geometric distortion 
correction (see Supplementary Methods). 

2.3. Image preprocessing 

Data were processed with a pipeline developed in-house, imple-
mented in Matlab (MathWorks, version 2019a; Natick, MA), and uti-
lizing the Oxford Centre for Functional MRI of the Brain (FMRIB) 
Software Library (FSL version 6.0.1) (Jenkinson et al., 2012), Analysis of 

Table 1 
Sample Demographics.   

Sample  

Discovery Validation 

Age (years) 69.4 ± 8.9 69.0 ± 10.5 
Education (years) 16.3 ± 2.4 16.1 ± 2.7 
Sex (M/F) 24/56 30/51 
Diagnostic Group (CN/SCD/MCI/AD) 29/19/21/11 26/28/14/13 

Data are shown as mean ± standard deviation. There were no significant dif-
ferences between samples. M: Male; F: Female; CN: Cognitively Normal; SCD: 
Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s 
disease. 
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Functional NeuroImages (AFNI; afni.nimh.nih.gov), and ANTS 
(http://stnava.github.io/ANTs/) packages. This pipeline was developed 
and optimized for the Siemens scanner data acquired at Indiana Uni-
versity School of Medicine based on and following the evidence and 
recommendations in Satterthwaite et al. (2013), Parkes et al. (2018), 
and Lindquist et al. (2019). A brief overview of preprocessing steps is 
provided below. For details refer to the Supplementary Methods. 

All processing was carried out in each participant’s native space. T1 
volumes were denoised (Coupé et al., 2008), bias field corrected (FSL), 
and skull stripped (ANTS). rs-fMRI data were first distortion corrected 
(FSL topup), motion corrected (mcflirt), and normalized to a 4D mean of 
1000. Nuisance regressors were removed from the data with use of ICA- 
AROMA (Pruim et al., 2015), aCompCor (Muschelli et al., 2014), and 
global signal regression. Data were then demeaned, detrended, and 
bandpass filtered (0.009–0.08 Hz). Finally, 18 timepoints (~22 sec) 
were removed from the beginning and end of the scan to remove edge 
artifacts introduced by bandpass filtering. Relative frame displacement 
output by mcflirt was used as an index of in-scanner motion. 

2.4. Network analysis 

Fig. 1 illustrates a diagram of the workflow from regional time series 
to modularity outcomes. 

2.4.1. Parcellation preparation and connectivity matrix construction 
For each participant, after preprocessing, the final dataset consisted 

of 464 timepoints. For network construction the Schaefer et al. (2018) 
cortical parcellations at two scales (200 and 300 regions/nodes) were 
used. Time series for each node were obtained from the average of all 
voxel time courses within that node. For sFC (the term static here refers 
to the assumption that FC is constant over scan duration (Lurie et al., 
2020)), the full time series were cross-correlated to obtain a node-by- 
node matrix of Pearson correlations (Fig. 1 A-B). All sFC matrices 
were Fisher z-scored prior to analysis. The tvFC matrices were generated 
with a sliding window correlation approach (Fig. 1 A, C). This involves 
taking partially overlapping segments of the time series in order to es-
timate FC dynamics. Parameters of interest were a 56-timepoint window 

size (~67 sec; above the previously reported adequate duration for tvFC 
estimation (Hutchison et al., 2013, Betzel et al., 2016)), step size of 14 
time points (resulting in 75% overlap of adjacent windows, 30 total 
windows), and a taper shape of window size/3 (Zalesky et al., 2014). To 
investigate whether any results were dependent on window size, a 
longer window size (93 time point window, ~111 sec, 28 time point 
steps, 14 total windows, capturing slower dynamics and mental state 
transitions (Iraji et al., 2020, Gonzalez-Castillo et al., 2015)) was also 
investigated. 

2.4.2. Modularity 
Both sFC and tvFC matrices were analyzed with the Louvain com-

munity detection algorithm implemented in Matlab as part of the Brain 
Connectivity Toolbox (Rubinov and Sporns, 2010, Blondel et al., 2008), 
which aims to detect communities by maximizing a global modularity 
measure (Q-metric) 

QW =
1
lW

∑

i,j∈N

[

Wij −
kW

i kW
j

lW

]

δmi ,mj 

(Newman and Girvan, 2004, Rubinov and Sporns, 2010), adapted 
here for weighted undirected networks. To capture significant modular 
organization at multiple spatial scales (Jeub et al., 2018, Fortunato and 
Hric, 2016), we varied a partition resolution parameter γ (gamma) over 
a wide range, from 0.1 to 4, in steps of 0.1 (Fig. 1C, E). Due to the sto-
chastic nature of the algorithm, 1000 independent runs of modularity 
maximization were performed at γ value. From these 1000 runs, a single 
community partition with the maximal value of the Q-metric was 
retained. If multiple distinct partitions with equal Q-metric were iden-
tified, the one with the highest frequency across all the runs was 
selected. The selected partitions were then used for generating co- 
assignment matrices (see section 2.4.5.1 tvFC RSN temporal stability). 

To maintain interpretability of the partitions obtained from modu-
larity maximization and limit the influence of single node communities, 
a maximum γ value defining the upper bound of the γ range was 
determined for subsequent analyses. For sFC this was chosen as the 
highest γ at which the average number of single node communities 
across the sample was <1. The same approach was employed in tvFC, 

Fig. 1. Network construction and modularity workflow. (A) Time series for all nodes were correlated to generate (B) a sFC matrix, on which modularity was 
performed to obtain (C) a set of partitions across the γ (gamma) parameter range. Sliding window was used to compute (D) tvFC matrices for partially overlapping 
time frames. (E) Modularity on each window generated a set community partitions, which were then used to compute (F) co-assignment over time at each γ. Pairwise 
nodal co-assignment values were then averaged with and between canonical resting state network (RSN) blocks. VIS: Visual; SM: Somatomotor; DA: Dorsal Attention; 
VA: Ventral Attention; LM: Limbic; FP: Frontoparietal; DMN: Default Mode Network. 
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where the average was determined over all windows and all participants 
in the sample. Therefore, the final γ range was set within sample from 1 
to the upper limit in steps of 0.1, and all analyses utilized partitions 
within this range. 

2.4.3. Network outcomes 
There is mounting evidence that the community structure of brain 

networks is organized on multiple spatial scales (Sporns and Betzel, 
2016, Betzel and Bassett, 2017). Previous clinical research which uti-
lized Louvain modularity has either investigated a single or a small set of 
community scales. Here, to avoid an arbitrary selection of scale, a finely 
sampled range of the γ resolution parameter was assessed with a data 
driven selection of an upper bound for interpretable partitions. How-
ever, this yields a large set of partitions for each subject, so to identify 
stable variations in network outcomes, area under the curve (AUC) over 
the γ range was computed for outcomes of interest (sFC: Q-metric and 
number of communities; tvFC: mean and standard deviation of Q-metric 
across windows and temporal stability (defined in subsequent section)), 
using the trapezoidal rule as implement in the Matlab trapz function. If 
the shape of the outcome versus γ curve is not drastically different (e.g., 
linear versus exponential), AUC can serve as a useful composite mea-
sure, thus avoiding the need for selection of a specific scale or per-
forming a large number of statistical tests, which introduces a multiple 
comparisons problem (Fornito et al., 2016). 

2.4.3.1. tvFC RSN temporal stability. Here temporal stability is defined 
as a measure that captures the variability in community structure over 
time (windows). Operationally, temporal stability was computed as the 
number of times two nodes were assigned to the same community across 
windows, divided by the total number of windows (co-assignment). 
Aggregating over all node pairs, this forms a co-assignment (CA) matrix 
for each γ value (Fig. 1 F, left). High CA values indicate that nodes 
remained mostly within the same community over time, while low 
values indicate that nodes we often assigned to different communities. A 
single temporal stability matrix across γ resolutions was then computed 
as AUC of the CA matrices. At this stage mass univariate testing would 
require (N2/2)-N tests (where N is the number of nodes, here either 200 
or 300). To reduce dimensionality of the data and improve interpret-
ability of results, RSN-averaged temporal stability values were 
computed within and between bilateral RSNs (Fig. 1 F, right) using the 
RSN labels provided with the cortical parcellations (Schaefer et al., 
2018). This yields a 7x7 RSN network matrix (28 unique network blocks, 
7 within network and 21 between network interaction blocks), which 
describes over the duration of the scan, how likely it is that nodes within 
a RSN or between a pair of RSNs will be assigned to the same commu-
nity. It is expected that within RSN blocks will have higher temporal 
stability compared to between RSN blocks. 

2.5. Neurocognitive assessments 

All participants underwent a clinical and neuropsychological battery 
as part of the Uniform Dataset (Weintraub et al., 2018). Data from the 
following assessments is reported here: Montreal Cognitive Assessment 
(MoCA; total score) (Nasreddine et al., 2005), Rey Auditory Verbal 
Learning Test (RAVLT, immediate and delayed recall accuracy) (Wein-
traub et al., 2018), Craft Story (immediate and delayed) (Craft et al., 
1996), Benson Complex Figure (presence and placement recall) (Possin 
et al., 2011), Trail-Making Test (time to completion) (Reed and Reed, 
1997), and Digit Span Test (forward and backward number span) 
(Weintraub et al., 2018). All scores were adjusted by regressing out age, 
sex, and education (multiple linear regression in Matlab), and subse-
quently z-scored relative to an independent sample of controls as done in 
previous work (Contreras et al., 2019). Finally, the scores were grouped 
and averaged within three domains: (1) Global Cognition (MoCA), (2) 
Memory (RAVLT immediate and delayed, Craft Story immediate and 

delayed, Benson Complex Figure recall), (3) Attention Processing and 
Speed (Digit Span forward and backward, Trail A time). 

2.6. Statistics 

All statistics were carried out in Matlab. Demographic comparisons 
among diagnostic groups were carried out with an analysis of variance 
(ANOVA) or Х2-test and follow-up t-tests, where appropriate. Group 
comparisons were carried out blinded to true diagnostic groups, with 
differences in modularity outcomes (sFC: AUCs of Q-metric and number 
of communities; tvFC: AUCs of means and standard deviations (across 
windows) of Q-metric) assessed with a permutation analysis of covari-
ance (ANCOVA), with age, sex, and education as nuisance covariates. 
Temporal stability differences were probed with a permutation 
ANCOVA, independently for both samples and both cortical parcellation 
scales (28 tests per sample and parcellation). Permutations involved 
randomly shuffling group assignments 10,000 times to generate a null 
distribution of F-values, from which a permutation p-value was 
computed. Post-hoc comparisons were carried out via pairwise t-tests. 
Multiple comparisons in the were subject to a 5% False Discovery Rate 
(FDR) adjustment when appropriate. 

Correlation analyses of modularity outcomes (Q-metric measures 
and number of communities) and cognitive domains were carried out 
within sample, unblinded, and across all groups, using Spearman’s 
partial correlation (adjusted for age, sex, and education). For temporal 
stability, correlations were investigated independently for each cogni-
tive domain, where all 28 network blocks in the discovery sample (for 
both the 200 and 300 node parcellations) were tested at an uncorrected 
threshold of p < 0.05. Significant relationships that emerged in both 
parcellations of the Discovery sample, were tested for reproducibility in 
the Validation sample. Multiple comparisons in the Validation sample 
were subject to a 5% FDR. 

2.7. Supplementary analyses 

The following analyses were carried out after the completion of the 
above-mentioned comparisons in order to aid interpretation of the main 
findings. 

2.7.1. Younger versus older AD 
The age of AD onset has shown to have impact on neuroimaging 

observed deficits (Gour et al., 2014, Adriaanse et al., 2014, Chung et al., 
2016). To understand if this played a role in our study, AD participants 
from the Discovery and Validation samples were combined and split into 
two subgroups based on median age at the time of the scan. The sFC and 
tvFC outcome comparisons were carried out at both parcellations to 
assess possible differences in AD subgroups. Additional comparisons 
were carried out in CN participants to determine whether there were any 
differences that were age and not disease onset related. 

2.7.2. Impact of splitting the dataset 
We investigated whether the group differences and their lack of 

reproducibility between samples reported here were influenced by the 
random split of the dataset into the Discovery and Validation samples. 
Modularity outcome variables for sFC (AUCs of Q-metric and number of 
communities) and tvFC (AUCs of the means and standard deviations of 
the Q-metric across windows) from both samples were pooled together 
and re-split 500 times, with group comparisons repeated for each split. 
The proportion of times (out of 500) that a result was consistent with the 
original split served as an indicator of robustness, with values close to 1 
indicating outcomes consistent with the original split. In the case of RSN 
temporal stability, data were reported for each network block as the 
number of times (out of 500 random splits) an ANCOVA main effect of 
group was found in both Discovery and Validation samples, at p < 0.05 
uncorrected, within each parcellation scale. 
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3. Results 

3.1. Sample characteristics 

Table 2 shows demographic comparisons among diagnostic groups 
within the Discovery and Validation samples. Overall, the groups were 
well matched within each sample, with only the Discovery sample 
showing a significant difference in sex distribution (Х2 = 8.78, p < 0.05). 
Supplementary Fig. 1 displays a more detailed distribution of the de-
mographic variables, demonstrating that the sex difference in the Dis-
covery sample is driven by greater proportions of females in the CN and 
AD groups. Examination of adjusted z-scores for the three cognitive 
domains of interest (Global Cognition, Memory, and Attention and 
Processing Speed) showed a significant decline with increasing diag-
nosis severity for Global Cognition and Memory. In-scanner motion did 
not significantly differ between groups (one-way ANOVA, p > 0.05), nor 
was it correlated with any modularity outcome variables (static FC: AUC 
of Q metric or number of communities; tvFC: AUC of mean or standard 
deviation of Q metric or mean AUC of CA across all network blocks; p >
0.05). 

3.2. Group comparisons of modularity outcomes 

Modularity and correlation results (subsequent section) are reported 
for the 200 node parcellation and ~ 1 min window. Results from the 300 
node parcellation and longer window length, which were generally in 
agreement with the main results, are provided in Supplementary figures. 
For sFC, the upper γ value that had on average < 1 single-node com-
munity was similar for both samples and parcellation scales (Discovery 
sample: γ = 2.7 and 2.8 for the Schaefer 200 and 300 node networks, 
respectively; Validation sample: 2.8 and 2.3). Q-metric and number of 
communities versus γ curves were qualitatively similar (Fig. 2), with 
their AUC values not significantly different between groups in either 
sample (all p > 0.05, age, sex, and education adjusted permutation 
ANCOVA; 10,000 permutations). Consistent results were observed in the 
finer, 300 node parcellation for both samples (Supplementary Fig. 2A- 
B). 

The average number of single-node communities across all subjects 
and windows for tvFC were similar to those of sFC (Discovery sample: γ 
= 2.6 and 2.6; Validation sample: γ = 2.6 and 2.2, for 200 and 300 node 
parcellations, respectively). Mean and standard deviation of Q-metric 
versus γ curves were qualitatively similar (Fig. 3), with their AUC values 
not significantly different between groups in the Discovery sample (all p 
> 0.05, age, sex, and education adjusted permutation ANCOVA; 10,000 
permutations), while the Validation sample showed trend-level differ-
ences between groups for both AUC of means and standard deviations of 
the Q-metric (age, sex, and education adjusted ANCOVA with 10,000 
permutations, p = 0.067 and p = 0.07). Consistent results were observed 
in the finer, 300 node parcellation for both samples, where the trend- 
level main effect of group persisted in the Validation sample (p =
0.074 and p = 0.069) (Supplementary Fig. 2C-D). Exploratory follow-up 
t-tests revealed that the trend-level effect of group in the Validation 
sample was driven largely by MCI versus AD for AUC of means and SCD 
versus AD for AUC of standard deviations of Q-metric. 

As expected, CA was on average greater within RSN networks 
compared to between, with CA versus γ curves qualitatively similar 
(Supplementary Fig. 3). Whole network averaged temporal stability 
(AUC of CA versus γ curves) moderately, but not perfectly correlated 
with sFC outcomes (Q metric: Spearman’s rho = 0.49 and 0.43 in the 
Discovery sample and 0.59 and 0.58 in the Validation sample, for the 
200 and 300 node parcellations, respectively; number of communities: 
Spearman’s rho = -0.55 and − 0.40 in the Discovery sample, and − 0.58 
and − 0.40 in the Validation sample, for the 200 and 300 node parcel-
lations), which suggests that the preservation of temporal information in 
tvFC metrics may offer additional information over sFC modularity 
metrics. Nodal group averages of temporal stability between groups 
(Fig. 4, Supplementary Figs. 4 and 5) qualitatively show that high 
temporal stability regions in CN are reduced along AD severity in the 
Discovery sample (e.g., occipital cortex; Fig. 4A), while low temporal 
stability regions show an increase (sensory/motor cortices; Fig. 4A). To 
separate the contribution of within and between RSN network connec-
tions, network edges were stratified as either connections within a RSN 
or as connecting different RSNs and their respective nodal averages were 
computed (Fig. 4B-C). Nodal averages for the Validation sample (Sup-
plementary Fig. 4) were less pronounced between groups for the full 
network (Supplementary Fig. 4A); however, there was a qualitative in-
crease in between network RSN temporal stability with increasing 
severity of diagnosis. Data from the 300 node parcellation networks 
(Supplementary Fig. 5) were similar to that of 200 node networks. 

To reduce the number of multiple comparisons, statistical group 
differences in temporal stability were carried out on RSN block-averaged 
data (7 within-network and 21 between-network interactions). Several 
network blocks in both samples showed significant uncorrected differ-
ences (one-way permutation ANCOVA, uncorrected p < 0.05; Fig. 5B), 
however, there were no overlapping significant blocks between the two 
samples and no blocks survived FDR adjustment for the 28 tests within 
each sample. The main effect of group was observed in two blocks in the 

Table 2 
Sample Characteristics.  

Discovery Sample  
CN SCD MCI AD Stats 

N 29 19 21 11  
Age (years) 69.9 ±

7.8 
68.4 ±
9.3 

70.8 ±
7.8 

66.6 ±
12.9 

n.s. 

Education (years) 16.5 ±
2.4 

16.5 ±
2.4 

16.3 ±
2.5 

15.3 ± 2 n.s. 

Sex (M/F) 4/25 8/11 10/11 2/9 p < 
0.05 

MoCA (z-score) − 0.2 ±
1.3ǂ§

− 0.4 ±
0.9ǂ§

− 2.3 ±
1*^§

− 6.3 ±
2*^ǂ 

p <
0.05E- 
15 

Memory (z-score) − 0.2 ±
0.7ǂ§

− 0.2 ±
0.5ǂ§

− 2.1 ±
0.9*^ 

− 2.7 ±
1.7*^ 

p <
0.05E-9 

Attention and 
Processing Speed (z- 
score) 

− 0.1 ±
0.6 

0.1 ±
0.5 

− 0.3 ±
0.7 

− 0.1 ±
1.1 

n.s. 

Mean Frame 
Displacement 

0.20 ±
0.09 

0.21 ±
0.10 

0.23 ±
0.12 

0.29 ±
0.23 

n.s.  

Validation Sample  
CN SCD MCI AD Stats 

N 26 28 14 13  
Age (years) 66.4 ±

9.9 
69.8 ±
11.8 

75.1 ±
5.8 

66.2 ±
10.2 

n.s. 

Education (years) 16.4 ±
2.3 

16.5 ±
2.7 

15.4 ±
2.8 

15.5 ±
3.2 

n.s. 

Sex (M/F) 5/21 11/17 8/6 6/7 n.s. 
MoCA (z-score) 0.1 ±

1ǂ§
− 0.6 ±
1.2ǂ§

− 2 ±
1.5*^§

− 5.5 ±
2.7*^ǂ 

p <
0.05E- 
12 

Memory (z-score) − 0.1 ±
0.8ǂ§

− 0.3 ±
0.8ǂ§

− 1.5 ±
0.7*^§

− 3.1 ±
0.5*^ǂ 

p <
0.05E-7 

Attention and 
Processing Speed (z- 
score) 

− 0.3 ±
0.5 

− 0.0 ±
0.6 

− 0.35 ±
0.7 

− 0.2 ±
0.5 

n.s. 

Mean Frame 
Displacement 

0.20 ±
0.08 

0.21 ±
0.10 

0.23 ±
0.12 

0.29 ±
0.23 

n.s. 

Data are shown as mean ± standard deviation. P-values represent significance 
for a one-way analysis of variance or Х2-test where appropriate. For distribu-
tions of sex see Supplementary Fig. 1. CN: Cognitively Normal; SCD: Subjective 
Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease; n. 
s.: non-significant; MoCA: Montreal Cognitive Assessment; M: Male; F: Female. 
The following denote significant pairwise difference in post-hoc t-tests: * 
significantly different from CN; ̂  significantly different from SCD; ǂ significantly 
different from MCI; § significantly different from AD. 
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Discovery sample (Visual (VIS)-Somatomotor (SM) and SM-Ventral 
Attention (VA), Fig. 5A), for which exploratory post-hoc tests revealed 
that AD had lower temporal stability compared to CN and SCD (p <

0.05) for the VIS-SM interaction block, while for the SM-VA block, AD 
had higher temporal stability compared to the other three groups (p <
0.05). Five blocks showed differences in the Validation sample (SM, 

Fig. 2. Static Functional Connectivity (sFC) modularity outcomes did not differ between diagnostic groups. Modularity (A) Q-metric and (B) number of communities 
versus gamma (γ) resolution curves are shown for the Discovery (Left) and Validation (Right) samples for each metric. Data are plotted as mean (solid lines) ±
standard deviation (shaded fill) by group. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease. 

Fig. 3. Time-varying Functional Connectivity (tvFC) modularity outcomes did not differ between diagnostic groups. Modularity Q-metric (A) means and (B) standard 
deviations (st.dev.) versus gamma (γ) resolution curves are shown for the Discovery (Left) and Validation (Right) samples for each metric. Data are plotted as mean 
(solid lines) ± standard deviation (shaded fill) by group. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive Impairment; AD: Alz-
heimer’s disease. 

Fig. 4. Temporal stability of each node averaging over (A) all connections of that node, (B) only the within resting state network (RSN) connections, and (C) only the 
between RSN connections for each node in the Discovery sample 200 node networks. Data from the Validation sample are shown in Supplementary Fig. 4 for the 200 
node parcellation and 300 node network data for both samples are shown in Supplementary Fig. 5. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: 
Mild Cognitive Impairment; AD: Alzheimer’s disease. 
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Frontoparietal (FP), and interaction blocks of FP and SM, Limbic, and 
Default Mode networks, Fig. 5C). Exploratory post-hoc tests showed that 
temporal stability was (1) higher in the SM network in MCI compared to 
SCD and AD, (2) lower in the SM-FP interaction block in MCI compared 
to SCD, (3) higher in the FP-Limbic interaction block in MCI compared to 
SCD and AD, (4) higher in the FP network in MCI compared to SCD and 
AD, and (5) higher in the FP-Default Mode interaction block in MCI 
compared to SCD and AD (Fig. 5C; all p < 0.05). Results from the 300 
node parcellation networks were largely similar to those in Fig. 5, with 
exception of VA-Limbic interaction block showing uncorrected signifi-
cance in the Discovery sample and lack of significance in the VIS-SM 
interaction block (Discovery sample) and Limbic-FP interaction block 
(Validation sample) (Supplementary Fig. 6). Finally, because there is no 
consensus on the window length parameter in tvFC, a longer (~111 s) 
window was also employed. Both Q-metric and temporal stability results 
were similar for the longer window (Supplementary Fig. 7). 

3.3. Relationships to cognition 

For the three cognitive domains of interest (general cognition, 

memory, and attention and processing speed) relationships with tem-
poral stability were first investigated across all four diagnostic groups 
within all RSN blocks in the Discovery sample and any significant re-
lationships were subsequently assessed in the Validation sample. Partial 
Spearman’s rho values (adjusted for age, sex, and education) are re-
ported for all 28 RSN blocks for each of the three domains in Supple-
mentary Fig. 8. Of all investigated relationships, general cognition 
significantly correlated with temporal stability of the VA network 
(partial Spearman’s rho 0.31, p = 0.011; Fig. 6A), memory correlated 
with the VIS-Default mode interaction block (partial Spearman’s rho 
− 0.27, p = 0.032), and attention and processing speed correlated with 
Limbic-FP interaction block (partial Spearman’s rho 0.26, p = 0.033). 
These same results were obtained in the 300 node parcellation networks 
(partial Spearman’s rho 0.32, − 0.28, and 0.24, respectively, all p < 0.05; 
Supplementary Fig. 8). When these three relationships were assessed for 
reproducibility in the Validation sample, only the positive association of 
general cognition with temporal stability of the VA network was 
reproduced in the 200 node (partial Spearman’s rho 0.34, pFDR < 0.05, 
corrected for three tests performed in the Validation sample; Fig. 6B) 
and 300 node (partial Spearman’s rho 0.44, pFDR < 0.05, Supplementary 

Fig. 5. Group differences in resting state network blocks in the (A) Discovery and (C) Validation samples. (B) Permutation analysis of covariance (age, sex, and 
education adjusted) main effects of group within and between resting state networks at uncorrected p < 0.05. None of the blocks were significant in both samples and 
none survived false discovery rate adjustment for the 28 network blocks tested. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild Cognitive 
Impairment; AD: Alzheimer’s disease. 

Fig. 6. Relationship of general cognition and temporal stability of the ventral attention resting state network. Individual points represent individual participants 
from either the (A) Discovery or (B) Validation samples, colored by diagnostic group. CN: Cognitively Normal; SCD: Subjective Cognitive Decline; MCI: Mild 
Cognitive Impairment; AD: Alzheimer’s disease. rho: Partial Spearman’s rho (age, sex, and education adjusted). * denotes FDR-significant correlation in the Vali-
dation sample. 
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Figure 9A-B) parcellation networks. This relationship was also found 
with a longer window size (~111 s) in tvFC estimation (Supplementary 
Figure 9C-D: 200 node parcellation, partial Spearman’s rho 0.29 and 
0.33, and Supplementary Figure 9E-F: 300 node parcellation, partial 
Spearman’s rho 0.31 and 0.28, for Discovery and Validation samples, 
respectively. All p < 0.05). 

Subsequently, cognitive domains were correlated with network 
outcomes within each of the diagnostic groups in the combined dataset. 
For sFC networks, only the AUC of number of communities significantly 
correlated with attention and processing speed domain in the SCD group 
for the 200 node parcellation (partial Spearman’s rho − 0.34, p < 0.05 
uncorrected), however this relationship was not present in the 300 node 
parcellation. For tvFC, attention and processing speed significantly 
correlated with mean and standard deviation of the average Q-metric 
over windows in the SCD group for the 200 node parcellation (partial 
Spearman’s rho 0.46 and − 0.33, p < 0.05, respectively), as well as with 
standard deviation of the average Q-metric over windows in the MCI 
group (partial Spearman’s rho 0.51, p < 0.05). None of these relation-
ships reproduced in the 300 node parcellation network modularity 
outcomes. 

Of the correlations that met uncorrected significance in the 200 node 
parcellation, two survived FDR adjustment in the 300 node parcellation 
data. Temporal stability correlated with: (1) general cognition in the CN 
group in the SM-VA interaction block (partial Spearman’s rho − 0.39 and 
− 0.40, p = 0.006 and pFDR < 0.05, for 200 (Fig. 7A) and 300 (Supple-
mentary Figure10A) node parcellation data, respectively) and (2) 
attention and processing speed in the MCI group in the VIS-VA inter-
action block (partial Spearman’s rho 0.43 and 0.50, p = 0.022 and pFDR 
< 0.05, for 200 (Fig. 7B) and 300 (Supplementary Figure 10B) node 
parcellation data, respectively). 

3.4. Supplementary analyses 

3.4.1. Younger versus older AD comparisons 
The median age of all AD participants used to separate the younger 

and older AD (yAD and oAD, respectively) was 65.5 years. Neither years 
of education nor sex differed between the two AD groups. Among 
modularity outcomes in sFC (AUC of modularity Q-metric and number 
of communities), the Q-metric was significantly lower (t-test, p < 0.05) 
in oAD (11.74 ± 1.48) than in yAD (12.96 ± 0.99) in the 200 node but 
not the 300 node parcellation networks (Fig. 8A). No significant dif-
ferences were found for tvFC in the mean or standard deviation of the 
average Q-metric over windows. Temporal stability of community 
structure was significantly higher in the yAD group (independent sam-
ples t-test, pFDR < 0.05) only in the 200 node parcellation networks for 

the VIS network block, the SM-Limbic interaction block, and the VA- 
Limbic interaction block (Fig. 8 C-D). When the combined CN sample 
was split by age, only temporal stability was different, however, it was 
not in the same RSN blocks as AD (200 node parcellation, limbic 
network and the somatomotor-dorsal attention interaction block, inde-
pendent samples t-test, pFDR < 0.05). 

3.4.2. Impact of splitting the dataset 
Repeated splits of the dataset into two samples produced results in 

line with those reported above. Supplementary Table 1 shows the 
reproducibility of findings obtained from the ‘original’ split of the 
dataset expressed as a ratio (# of replicated results/500 total splits). 
Additionally, the consensus between samples (# of times the two sam-
ples produced the same result/500) is shown. For temporal stability, in 
both parcellations the FP network block had the highest reproducibility 
of significance (0.026 and 0.076, for the 200 and 300 node parcellations, 
respectively), however these values were still extremely low. Across 
both samples and parcellations the fraction of significant outcomes of 
the FP network block was 0.018 (9/500 random splits; Supplementary 
Figure 11). 

4. Discussion 

In recent years, functional neuroimaging has been increasingly uti-
lized to study the consequences of AD in vivo, resulting in new insights 
into location and extent of functional disruptions in the brain. The 
application of network science has allowed analysis of fMRI data as a 
system (network) of individual elements (brain regions) and their in-
teractions (correlation of blood-oxygen-level-dependent signal). In this 
study, we focused on the temporal dynamics of brain function in AD by 
examining the stability of community structure, at rest, in a sample of 
four groups that span the AD severity continuum. In a robust, two- 
sample (Discovery and Validation) design, we identified a reproduc-
ible relationship of temporal stability within the ventral attention 
network and overall general cognition measured by the MoCA. Lower 
stability, measured as a weakened propensity of ventral attention 
network regions to associate within the same network community across 
time, was significantly associated with lower levels of performance. We 
found no persistent/reproducible differences in commonly reported 
modularity outcomes (Q-metric, its mean and standard deviation over 
time, or the number of communities). 

Prior applications of modularity analyses vary with respect to the 
algorithm used to cluster the data. The two most often seen approaches 
utilize either the Louvain algorithm (Blondel et al., 2008, Rubinov and 
Sporns, 2010, Contreras et al., 2019, Brier et al., 2014, Onoda and 

Fig. 7. Significant within diagnostic group relation-
ships (across both samples) between cognitive scores 
and temporal stability. (A) In the cognitively normal 
(CN) group, general cognition was negatively corre-
lated with temporal stability of the Somatomotor and 
Ventral attention network interaction block. (B) In 
the mild cognitive impairment (MCI) group, attention 
and processing speed positively correlated with tem-
poral stability of the Visual and Ventral Attention 
network interaction block. Data are shown for the 
200 node parcellation data; 300 node parcellation 
data are shown in Supplementary Figure 10. Signifi-
cance was determined as p < 0.05 (uncorrected) 
partial Spearman’s correlation (age, sex, and educa-
tion adjusted) in 200 node data that was reproduced 
at pFDR < 0.05 in the 300 node data.   
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Yamaguchi, 2013) or k-means clustering (Ma et al., 2020, Schumacher 
et al., 2019). When investigating the community structure of sFC net-
works (computed via average over total scan duration), we did not find 
any group differences when using the area under the curve (AUC) of Q- 
metric or number of communities over the γ resolution range. Other 
studies that utilized the Louvain algorithm have shown a relationship of 
the Q-metric with age for a predefined community partition (Brier et al., 
2014), for a single γ value (Onoda and Yamaguchi, 2013), and for 
multiscale modularity outcomes (Contreras et al., 2019) over the full γ 
range. To our knowledge, no studies have utilized AUC to assess 
modularity differences that are consistent over a range of γ values. AUC 
can be a robust outcome measure for metrics that are dependent on free 
parameters (i.e., the γ resolution parameter in modularity), as it can 
capture behavior over a range of parameter values and reduce the 
number of statistical comparisons. The absence of group differences in 
AUC of the Q metric and number of partitions reported here highlights 
the importance of methods that sample a range of free parameters. Se-
lection of a single or a few values can produce outcomes that are algo-
rithm/scale dependent, while composite measures such as AUC provide 
a generalizable framework that can be applied across datasets. 

Either during performance of a task or at rest, blood-oxygen-level- 
dependent signal is always fluctuating, in part due to moment-to- 
moment changes in neuronal activity. It is now generally accepted 
that these temporal dynamics are meaningful for our understanding of 
brain function (Hutchison et al., 2013, Allen et al., 2014). Studies have 
shown that brain FC fluctuates between segregated and integrated states 
(Fukushima et al., 2018), that tvFC is related to cognition (Cohen, 2018, 
Kucyi et al., 2018), and that variance in tvFC may be genetically influ-
enced (Barber et al., 2021). Time-varying FC is often quantified via a 
sliding window approach, where partially overlapping segments of data 
are used to study temporal changes in outcomes of interest. In AD, this 
method has shown that patient groups spend more time in a connectivity 
state characterized by weak correlations (Fu et al., 2019, Schumacher 
et al., 2021). These studies utilized a k-means clustering procedure to 
identify these states and did not directly probe the modular structure of 
those networks. Here we used the Louvain algorithm to assess variability 
in modularity (AUC of the Q-metric), similar to the approach utilized in 
Hilger et al. (2020). We found no differences in average or standard 
deviation of the Q-metric across diagnostic groups. Visual inspection of 
the curves in Fig. 3 shows the group averages overlapping one another 
over the full γ range, indicating that the lack of differences is not due to 
AUC computation. 

Hilger et al. (2020) referred to temporal stability as the variance in 
the modularity Q-metric. Here we used Co-Assignment (CA) (Jeub et al., 
2018) as an index of temporal stability, similar to Contreras et al. 
(2019), in which CA was computed from partitions across spatial scales 
to investigate coherence and coupling of RSNs in static FC. Because CA 
describes a relationship among node pairs, it makes it distinct from other 

tvFC network metrics, such as flexibility, which is a single node-based 
metric that relies on multi-layer modularity approaches (Bassett et al., 
2011). We computed the AUC of CA over time (across all sliding win-
dows) to investigate stability of community assignments within and 
between cortical RSNs. For 28 unique cortical RSN blocks (7 within 
network and 21 interaction blocks), commonly implicated networks 
emerged when group comparisons were carried out (Fig. 5, Supple-
mentary Fig. 6, and Supplementary Fig. 7 for longer window size), such 
as default mode and frontoparietal involving systems (Hohenfeld et al., 
2018). However, our findings did not replicate in our two-sample design 
and none of the differences survived FDR-adjustment for the 28 network 
blocks. 

We assessed whether the random split of the dataset into Discovery 
and Validations samples influenced our outcomes by performing an 
additional 500 random splits and repeating all statistical comparisons on 
the outcome metrics. Results from this analysis demonstrated a high 
degree of consensus with the original dataset split (Supplementary 
Table 1 and Supplementary Figure 11), which indicates that the absence 
of reproducibility of group differences (or lack thereof) in our study is 
not a chance occurrence. It has been shown that FC differs as a function 
of age of onset of AD (Pini et al., 2020); therefore, in order to assess 
whether our findings are influenced by a heterogeneous AD sample we 
performed a median split on the AD patient group based on age at time 
of scan and compared older and younger patients. The median age was 
65.5 years, which is consistent with generally accepted criteria for 
classification of early and late onset Alzheimer’s disease. Our results 
showed that younger AD patients had higher Q-metric AUC (sFC) as well 
as higher temporal stability of visual, somatomotor-limbic, and ventral 
attention-limbic network interaction blocks. These observed differences 
did not overlap with any findings among our diagnostic groups, and 
while they are in themselves intriguing, they must be further addressed 
in larger samples before any definitive interpretations can be made. 

Correlation analysis of RSN temporal stability and neuropsycholog-
ical domains (global cognition, memory, and attention processing and 
speed) showed a single robust and reproducible relationship of global 
cognition and the ventral attention network. This relationship was seen 
across the two window sizes, at both parcellation scales, and in both 
Discovery and Validation samples (Fig. 6). The ventral attention 
network is active during orientation to salient targets (Fox et al., 2006, 
Yeo et al., 2011). It has been shown to activate during a short-term 
memory task in AD in a manner that did not significantly differ from 
controls (Kurth et al., 2019), and an ICA-derived ventral attention 
network was shown to be preserved in AD (Li et al., 2012). The tem-
poroparietal junction, a key node in the ventral attention network, has 
been shown to have altered connectivity to the posterior cingulate 
cortex in AD patients with poor orientation for time performance, 
relative to AD patients with good performance (Yamashita et al., 2019). 
Our index of global cognition was derived from the total Montreal 

Fig. 8. Differences in modularity outcomes in younger (yAD) compared to older Alzheimer’s disease (oAD) participants for the 200 node parcellation networks. (A) 
Area under the curve (AUC) of the modularity Q-metric from static functional connectivity (sFC). (B-D) Temporal stability differences of time-varying functional 
connectivity in the Visual network (B), Somatomotor-Limbic interaction block (C), and Ventral Attention-Limbic interaction block. A-D were significantly different 
between groups (independent samples t-tests (A) p < 0.05 and (B-D) pFDR < 0.05 corrected for the 28 network blocks). 
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Cognitive Assessment score, which captures several cognitive domains, 
such as memory, attention, executive function, language, and reasoning, 
which require attention and orientation to stimuli. Therefore, it is 
plausible that lower stability of the ventral attention system contributes 
toward observed deficits in global cognition. 

There are important methodological considerations and limitations 
to be considered in the interpretation of the presented findings. First, 
data preprocessing strategies can impact the final FC estimates. The 
strategy employed here is one that is well suited for dynamic FC analyses 
and has been shown to produce reliable network estimates (Parkes et al., 
2018). How the brain is parsed and in turn how regions are grouped can 
have an impact on the data. We chose the Schaefer parcellation as a 
functionally relevant subdivision of the cortex, the regions of which are 
discretely group into the RSNs reported by Yeo and colleagues. Alter-
native strategies could involve use other available parcellation, testing 
each node pair (this poses a large multiple comparison problem), or 
testing the whole cortex average (very limited spatial specificity). 
Additionally, tvFC and modularity require free parameter choices, such 
as choice of window size, number of modularity iterations, and resolu-
tion parameter range. We aimed to address these issues by choosing a 
shorter and longer window size, running a high number of iterations 
(1,000) of modularity, and utilizing area under the curve across a range 
of the resolution parameters. It is possible that fluctuations in tvFC are 
related to sampling variability in fMRI data; however, we do not believe 
this to be the case here, as two window sizes (~1min and ~ 2 min) were 
utilized with a taper function 1/3rd the window size. Another limitation 
of these data is a relatively short acquisition duration of fMRI data (~10 
min). It is now generally accepted that longer acquisitions are better for 
more robust estimates of FC, however, this is difficult to achieve in 
clinical data, particularly in elderly and patient populations. Finally, 
splitting the dataset resulted in moderate sample sizes (~80 participants 
per sample). While larger samples are always preferred in order to 
conduct sufficiently powered analyses, we believe the validation op-
portunity provided by the two-sample strategy is more advantageous for 
identification of robust findings. 

In conclusion, we investigated modular structure of static and time- 
varying FC in a sample of four groups along the AD continuum. We 
report a robust relationship between global cognitive performance 
measured by MoCA and temporal stability of the ventral attention 
network. While FC-based metrics are not yet capable of serving as dis-
ease biomarkers in AD, time-varying FC investigations of resting-state 
fMRI data may offer unique insight into the neurobiological conse-
quences of AD and inform clinical interventions as well as biomarker 
and treatment development, specifically when evaluating their impact 
on cognition through stability of attentional systems. 
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Kessler, D., Jeub, L., Fortunato, S., Saykin, A.J., Sporns, O., 2019. Resting state 

E.J. Chumin et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.nicl.2021.102726
https://doi.org/10.1016/j.nicl.2021.102726
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0005
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0005
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0005
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0010
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0010
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0010
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0010
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0015
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0015
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0020
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0020
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0020
https://doi.org/10.1093/cercor/bhaa391
https://doi.org/10.1093/cercor/bhaa391
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0030
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0030
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0030
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0035
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0040
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0040
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0040
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0045
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0045
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0050
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0050
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0050
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0050
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0050
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0050
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0055
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0055
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0055
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0060
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0060
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0060
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0065
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0065
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0070
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0070
http://refhub.elsevier.com/S2213-1582(21)00170-4/h0070


NeuroImage: Clinical 31 (2021) 102726

11

network modularity along the prodromal late onset Alzheimer’s disease continuum. 
NeuroImage: Clinical 22, 101687. 
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